Találatok a következő kifejezésre: Mennyi a alap (173 db)

Szeretném, ha segítene valaki! 2000. október 1. óta 2010. december 31-ig mennyi lehet 2.500. 000, -Ft jegybanki alapkamattal növelt összege és mennyi a jegybanki alapkamat kétszeresével növelt összege?

Legjobb válasz: Egy _nagyjábóli_ számítás. Átlag kb 8% lehetett a jegybanki alapkamat az elmúlt 10 évben. Volt 13% is, most épp 5.25%. 2.5M*(1.08^10)~5.4M 2.5M*(1.16^10)~11M.

Egy _nagyjábóli_ számítás. Átlag kb 8% lehetett a jegybanki alapkamat az elmúlt 10 évben. Volt 13% is, most épp 5.25%. 2.5M*(1.08^10)~5.4M 2.5M*(1.16^10)~11M.
A kérdező hozzászólása: Nagyon köszönöm a segítséget.
Itt pontosan kiszámolja neked: http://www.apeh.hu/kalkulatorok/potlekszamitas
A kérdező hozzászólása: Nagyon köszönöm, de nem boldogultam vele.

Egy egyenlő szárú háromszög alapjának mérőszáma egész szám. Az alap hossza egyenlő a magassággal. Területének mérőszáma 100 - nál kisebb természetes szám. Mekkora lehet az alapja, mennyi a területe?

Legjobb válasz: a terület = alap*magasság/2 mondjuk az alapja "a" m=a, vagyis T=a²/2 vagyis a²/2 100-nál kiseb egész szám ezek szerint a osztható 2-vel és a²<200 vagyis a<15 A lehetséges értékek: a, T 2, 1 4, 8 6, 18 8, 32 10, 50 12, 72 14, 98 Annak, hogy a háromszög egyenlõ szárú, annak semmi szerepe nincs a feladat megoldásában.

a terület = alap*magasság/2 mondjuk az alapja "a" m=a, vagyis T=a²/2 vagyis a²/2 100-nál kiseb egész szám ezek szerint a osztható 2-vel és a²<200 vagyis a<15 A lehetséges értékek: a, T 2, 1 4, 8 6, 18 8, 32 10, 50 12, 72 14, 98 Annak, hogy a háromszög egyenlõ szárú, annak semmi szerepe nincs a feladat megoldásában.
A kérdező hozzászólása: Köszönöm szépen !

Mennyi a jegybanki alapkamat kétszeresének 365-öd része?

Késedelmi pótlék kiszámításához kellene az infó.

Legjobb válasz: (Jegybanki alapkamat*2)/365 www.mnb.hu

(Jegybanki alapkamat*2)/365 http://www.mnb.hu
0, 02876% minden 1000 forint után kb. 0, 2876ft a kamat naponta
A kérdező hozzászólása: Akkor 6000ft-ra kb 20ft a kamat ha kések 15 napot. Ez gyanúsan alacsonynak tûnik.
Pedig kb annyi, a közüzemikre ennyit szoktak rászámítani általában.
Elõször nagyon alacsony, de ez kamatos kamat. Minden nap, az elõzõ napi kamat is hozzáadódik az alapösszeghez, és már az után is kell a kamatot számolni. Egy év múlva már brutálisan magas lesz. Egy hónap késés viszont valóban nem tragédia ebbõl a szempontból.
Nem tõkésedik a késedelmi kamat mértéke, amely így van meghatározva. Tehát NEM kamatos kamat!


Henger alakú, felül nyitott edény készítéséhez 480cm2 lemezt használunk fel. Mennyi a térfogata? Ha az alapkör sugara6cm Segítsen valaki!

Legjobb válasz: az alapkör területe: 6^2*Pi=113,1 cm2 a palást területe: 480-113,1=366,9 cm2 így: 366,9=(2*Pi*6)*m --> m=9,73cm a térfogat pedig: 6^2*Pi*9,73=1100,4 cm3

az alapkör területe: 6^2*Pi=113, 1 cm2 a palást területe: 480-113, 1=366, 9 cm2 így: 366, 9=(2*Pi*6)*m --> m=9, 73cm a térfogat pedig: 6^2*Pi*9, 73=1100, 4 cm3
A kérdező hozzászólása: Köszi!:)

Mi az és mennyi a jegybanki alapkamat?

A számlán ez áll: "Késedelmes fizetés esetén a jegybanki alapkamat kétszeresét számítjuk fel." Ez 4000ft-ra mit jelent?

Legjobb válasz: http://www.mnb.hu/engine.aspx?page=mnbhu Jelenleg 5,75% a jegybanki alapkamat, amirõl bõvebben fent olvashatsz. Késedelmi kamat: 5,75*2/365

http://www.mnb.hu/engine.aspx?page=mnbhu Jelenleg 5, 75% a jegybanki alapkamat, amirõl bõvebben fent olvashatsz. Késedelmi kamat: 5, 75*2/365
nem tudok válaszal szolgálni de engem is érdekel :) Köszi
a repülési társaságtól függ. próbáld a gugliban, hogy repülés és súlyhatár. minden cégnél más. vagy telefonálj a reptérre.:)
A légitársaságtól függ, amelyikkel utazol, valamelyik csak 15 kilós feladott poggyászt enged, valamelyik 34-et. A méretei bõröndöstõl számítanak, hisz a reptéren nem fogják kipakolni és úgy lemérni a cuccaidat, ahogy a kézipoggyásznál a centik is számítanak nem csak a súly. Kerekestõl mindenestõl.
Általában minden légi cég, 1 fõ/20 kg bõrõnd, és 1 fõ/ 5 kg lehet a kézi poggyász súlya.MALÉV-nél tuti hogy így van.jah és 20 kg felet rá fizetsz, asszem kilónként 2000 ft-ot.a bõrõnd súlyát is hozzá kell számolni.egy jó tanács, ne tömd meg teljesen 20 kg-ig mert vissza fele úgy is hozol ezt azt.
13:43 as vagyok kézi pongyász mérete 25 cm max.
Egyes reptereken van egy mero eszkoz a kezi poggyasz szamara, egy keretfelehez hasonlit. Ha azon atfer a kezi poggyaszod akkor Ok.
13.43-ast kiegészítve wizzair-nél viszont pl 32 kg lehet a feladott poggyász maximum tömege, a kézié 10. A kézipoggyász max mérete náluk ha jól emlékszem 55x40x20 cm-es lehet. Ebbõl is látszik, hogy mennyire társaság függõ. Mielõtt elindulsz mindenképpen nézz utána az interneten, nehogy rá kelljen fizetned, mert azt sajna nem úszod meg két fillérrel!
Én Deltával fogok menni júniusban New Yorkba. A feladott poggyász 24 kiló lehet (a bõrönd súlya is bele számít). A kézipoggyász, amit magaddal vihetsz a gépre, 18 kiló lehet. És lehet nálad egy nagyon kicsi táska (ha nõ vagy akkor kis ritikül, ha férfi akkor egy övtáska). Abba az iratokat rakhatod (legalábbis ajánlott) meg zsepit esetleg fényképezõt. Szóval a legfontosabb dolgokat. Erre nincs súlyhatár. De szerintem azért az 1-2 kilót ne haladja meg.

Az ABCD trapezban az atlok O metszespontjan at meghuzzuk az alapokkal parhuzamos MN||AB||CD egyenest, M eleme AD, N eleme BC. Mennyi a hossza MO-nak es MN-nek az AB es CD fugvenyeben?

Hat ez kifogott rajtam...:p Koszi elore a segitseget!

Legjobb válasz: Mivel ABD és OMD hasonló háromszögek, MD/AD=OM/AB. Mivel ADC és AMO hasonló háromszögek, AM/AD=OM/CD. A két egyenlõséget összeadva a baloldalon (MD+AM)/AD=AD/AD=1 áll, tehát OM/AB+OM/CD=1, vagyis 1/OM=1/AB+1/CD. Hasonló számolást végezhetünk el a másik száron keletkezõ szakaszokkal (tehát felírjuk a BDC és BON háromszögek, majd a CON és CAB háromszögek hasonlóságát, és a kapott összefüggéseket összeadjuk), azt kapjuk, hogy 1/ON=1/AB+1/CD. Így OM=ON=MN/2, és 2/MN=1/AB+1/CD, azaz MN=(2*AB*CD)/(AB+CD), vagyis MN az alapok harmonikus közepe.

Mivel ABD és OMD hasonló háromszögek, MD/AD=OM/AB. Mivel ADC és AMO hasonló háromszögek, AM/AD=OM/CD. A két egyenlõséget összeadva a baloldalon (MD+AM)/AD=AD/AD=1 áll, tehát OM/AB+OM/CD=1, vagyis 1/OM=1/AB+1/CD. Hasonló számolást végezhetünk el a másik száron keletkezõ szakaszokkal (tehát felírjuk a BDC és BON háromszögek, majd a CON és CAB háromszögek hasonlóságát, és a kapott összefüggéseket összeadjuk), azt kapjuk, hogy 1/ON=1/AB+1/CD. Így OM=ON=MN/2, és 2/MN=1/AB+1/CD, azaz MN=(2*AB*CD)/(AB+CD), vagyis MN az alapok harmonikus közepe.
Egy hasonló megoldás hasonló háromszögek helyett a kicsit kellemetlenebb párhuzamos szelõk tételének többszöri alkalmazásával: MO/AB = DO/DB = (DB- OB)/DB =1 - OB/DB = 1- ON/DC MO = AB - ON *(AB/DC) DC*MO + AB*ON = AB*DC Hasonlóan: ON/AB = OC/CA= 1- AO/AC = 1 - MO/DC AB*MO + DC*ON = AB*DC Tehát van két egyenletünk: DC*MO + AB*ON = AB*DC AB*MO + DC*ON = AB*DC Ebbõl kell kiszámolni MO-t és ON-et. MO + (AB/DC)*ON = AB MO + (DC/AB)*ON = DC (AB/DC - DC/AB)*ON = AB - DC ON = (AB - DC)/(AB/DC - DC/AB)= AB*DC*(AB - DC) /(AB²-DC²) ON = AB*DC/(AB+DC) Ezt visszahelyettesítve: MO = AB*DC/(AB+DC)
A kérdező hozzászólása: Jajj, koszonom!!! :) )

A Narutonak mennyi valóság alapja van?

mármint úgy értem, hogy ami a Narutoban zajlik abból menni igaz? ( itt gondolok arra, hogy van ez a chakra izzé és úgyhallom h ez létezik, de lehet vele úgy mint a Narutoba vmit kezdeni? Vagy ez az egész harcmodor ezt lehet vhol tanulni?? Annyira tetszik nekem ez az egész és ha a valóságban is lehetne legalább egy kicsit megközelítö dolgot csin....) nagyon tetszik h úgy harcolnak ahogyan... Meg az egész... Vki tudja h ilyen harmodórt hol lehet tanulni?? Vagy a chakra bigyóról amit mondtam...?!

Legjobb válasz: Hát én nem nagyon tudom biztosra mondani, de a chakrás dolog létezik, igaz nem fog kék és piros lángszerû valami körülötted futkározni :) valójában ilyen a testben vándorló erõ vagy mi a szösz XD szóval létezik, de a Narutoban vannak túlzások, ilyen koncentrációs gyakorlatok vannak, nem ismerem az ázsiai harcmûvészetet annyira. A másik amit mondtál, ez a harcmodor fogalmam sincs hogy létezett/zik-e, de tudomásom szerint régen voltak nindzsák, aki így harcoltak, minél csendesebben és feltûnésmentesen. Az eszközök mint pl a shuriken, azt is használták, szóval így nézve van valóság alapja, de az ember nem volt képes elbírni sziklákat, meg 30 méter magasra ugrani 3mp alatt :D folytatva az én "tudásomat" a nindzsákat ilyen információk gyûjtésére használták. Még egyszer mondom ne vedd túl komolyan amit mondtam, mert lehet, hogy hülyeséget adok át neked XD várj még más válaszra is :)

Hát én nem nagyon tudom biztosra mondani, de a chakrás dolog létezik, igaz nem fog kék és piros lángszerû valami körülötted futkározni :) valójában ilyen a testben vándorló erõ vagy mi a szösz XD szóval létezik, de a Narutoban vannak túlzások, ilyen koncentrációs gyakorlatok vannak, nem ismerem az ázsiai harcmûvészetet annyira. A másik amit mondtál, ez a harcmodor fogalmam sincs hogy létezett/zik-e, de tudomásom szerint régen voltak nindzsák, aki így harcoltak, minél csendesebben és feltûnésmentesen. Az eszközök mint pl a shuriken, azt is használták, szóval így nézve van valóság alapja, de az ember nem volt képes elbírni sziklákat, meg 30 méter magasra ugrani 3mp alatt :D folytatva az én "tudásomat" a nindzsákat ilyen információk gyûjtésére használták. Még egyszer mondom ne vedd túl komolyan amit mondtam, mert lehet, hogy hülyeséget adok át neked XD várj még más válaszra is :)
A csakra mint szó létezik, csak kissé mást jelent. Amit itt használnak rá az talán chi (vagy qi) lehet inkább. Harcmûvészetekben itt-ott emlegetik... http://hu.wikipedia.org/wiki/Tajcsicsuan Talán ez is valami ilyesmi lehet: http://en.wikipedia.org/wiki/Qi A Narutonak külön világa van ahol néhány (sok-sok) dolog egész más, mint a való világban. A nindzsák inkább amolyan jól képzett orgyilkosok/bérgyilkosok voltak és nem hatalmi tényezõk. Az meg, hogy szemtõl szemben háborúba bocsátkozzanak egy hadsereggel az teljesen kizárt. Legalábbis szerintem. Ezek a narutos "nindzsa nemzetek" meg már a negyedik nagy háborúra készülnek :D
A chakra valójában is létezik, de a jelentése tök más. De itt egy interjú Kishimoto-val: http://naruto-kun.hu/viewpage.php?page_id=631

Egy húrtrapéz alapjai 10 és 18cm hosszúak, magassága 3cm. Mennyi a kerülete és a területe? (pitagorasz tétel. ) köszönöm előre is. (K)

Legjobb válasz: Nem hiszem el, hogyha lerajzolod a feladatot , plane, hogy tudod, hogy Pitagorasszal kell megoldani, akkor kis gondolkodassal nem tudod megoldani. Rajzold le, huzzd be a magassagot ket helyre, ezelatal kapsz egy teglalapot es ket derekszogu haromszoget.Innen mar menni fog a szarak kiszamolasa. A terulethez meg ez sem kell csak a ket alap atlaganak szorzasa a amgasaggal.

Nem hiszem el, hogyha lerajzolod a feladatot , plane, hogy tudod, hogy Pitagorasszal kell megoldani, akkor kis gondolkodassal nem tudod megoldani. Rajzold le, huzzd be a magassagot ket helyre, ezelatal kapsz egy teglalapot es ket derekszogu haromszoget.Innen mar menni fog a szarak kiszamolasa. A terulethez meg ez sem kell csak a ket alap atlaganak szorzasa a amgasaggal.
A kérdező hozzászólása: köszi szépen a segitséget.:DDD sikerült.:)


Ha éttermek, kávézók, bankok, okmányirodák, földhivatalok, posták, takarékszövetkezet, áruházak nyitvatartása érdekli, kattintson ide!